
ON A CERTAIN MOTION CORRECTION PROBLEM 
PMM Vol. 33, Ng2, 1969, pp.251-260 

G. S. SHELEMENT’EV 
Sverdlovsk 

(Receive s b October 1 , 1968) 

The problem of multiple correction of the perturbed trajectory of a controlled object 
with a restricted controlling force and tracking of some of the coordinates is considered. 

The problem investigated belongs to the class of problems analyzed in [l-5]. 

1, Formulation of the problem. Let the motion of a controlled object over 

a given time interval 0 < t < 6 be described in linear approximation by the vector 

differential equation 
dx 1 dt = A x + B u (1.1) 

where x is the n-dimensional vector of the phase coordinates of the object measured 
from the prescribed motion ; A and B are matrices of the appropriate dimensions ; u is 
the r-dimensional vector of the controlling force whose intensity x[u] is restricted by 

the inequality x Iu WI< P (p = const > 0) (1.2) 

Let us assume that the quantity x[ul takes the form of some norm of the vector func- 

tion u (z), (t < a < 6) (e. g, see [5], pp. 34,233). 
Our problem is to construct a control u which ensures the minimal error E (6) = 

= 11 {x(6)}, 11. Here {X }, denotes the set of m isolated phase coordinates xin(s=l, .., 

. . . . m) used to estimate the deviation of the true position of the object at the instant 
t = 6 from the prescribed position. This set of coordinates can be treated as an M- 

dimensional vector q = {q,} in some space {q}. The symbol 11 q 11 denotes the norm 

of the vector q. 

Let us consider the problem of finding the control which minimizes the error E com- 
plicated by the lack of complete information on the initial state x(O) of the object. Let 

us assume that the deviation s(O) of the object from the nominal trajectory at the initi- 
al instant is not known exactly, and that we are merely given the domain of scatter G(O) 

of the possible phase coordinates of the object for t = 0. 
Let us assume, moreover, that refinement of information about the instantaneous phase 

state of the object is assisted by additional tracking, so that by an instant t from the 

interval (0, +) we know the values of a pair of vector functions ~z(r), n(r)} (0 < 
< ‘G < t), where the values of the k-dimensional vector z(r) (k < n) are related to 

the phase vector x(r) by the expressions 

Z(T) = Q(-$xb) + A(t) (1.3) 
Here Q(T) ‘is some matrix of order k X n ; A(T) is a measurement error whose in- 

tensity x/Al is restricted by the condition 

x [A(z)1 < Y, (0 < T < t, v > 0 - const) (4.4) 

Here too we assume that the intensity X f A(T)] of the error can be interpreted as 
some norm of the vector function A(z) (0 < T < t). 

Finally, let us assume that we have already chosen some instants 

(i’ I,..., 1) 

t = t, (tj < 6) 
such that the control u (t) in each interval (tj, tj+l) can be determined 

on the basis of the tracking data for 0 < r < tj. 

Let us refine our picture of the controlled process. Let us assume that data obtained 
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by monitoring the signal {~(a), U(Z)} (0 < ‘G < tj) have indicated that at the instant 
t = tj the values of the phase vector X(tj) belong to the domain G(tj). The control 
u(j) (t) in the time interval tj < t < tj+* is then constructed as follows: we find a 

control u*(t) (tj < t < 6 ) which ensures that 

J (G (tj)) = minv max,e, (6) = maX& i’s) (1.5) 

x (tj) E G (tj)v x [ul <CL 
and set u(j) (t) = u*(t) for tj < t < tj+ I . This control guarantees a true miss 

E (6) < J(G(tj)) ; it is obvious, moreover, that J(G(tj+l)) < J(G(tj)). We assume that 

the domain G(0) is given. The domain G(tj) is found by monitoring the signal {Z(Z), 

‘(‘)} (O < IJ $ tj), and the specific form of this domain clearly depends on the spe- 

cific ‘tracking operations ‘p (j) = rp[t,, {Z(T), U(T)}] performed on the signals ( Z(T), 

U(T)}, (0 < T < ti; i = I,... , j) during motion (1.1). 
The magnirude of the miss J(G(tj) ) g iven by (1.5) therefore depends on the tracking 

operations*i*e* J(G(tj)) = f(q[t,, {Z(T), u(T)}~,**., q[tj, {Z(a), U(T)}]) W-9 
This implies, in turn. that the operations cp ci) should be chosen in such a way as to mini- 

mize the quantity J(G(tj) ) over all the possible operations q(“. The above control pro- 

cedure then yields the optimal result E (6). However, the procedure of minimizing 
f(cp’~‘,...,YJG) over the operations (p(‘) is a difficult one if the class of permissible 

operations rpir) is broad. 
In order to avoid this difficulty we shall restrict the set of permissible tracking opera- 

tions ‘pci) as follows. Let t = tj be some instant and let X[t, tj] be the fundamental 

matrix of homogeneous system (1.1) for u 3 0 (X[tj, ti] = E), and let the domain 

G(0) be such that the linear transformation 4 = {X[6, Olz }m maps the domain G(0) 
from the n-dimensional space {Z } into some rectangular parallelepiped G@(O) from 
the rr?,-dimensional space (4) ; let the faces of this parallelepiped be parallel to the cor- 

responding coordinate planes. 
If this condition is not fulfilled in the initial problem. then we can imbed G(0) in a 

larger domain G”(0) which satisfies this assumption. In accordance with this condition 

we shall consider only those tracking operations which at each instant t = tj define a 

domain G(tj) in {Z 1 such that its X16, tjI_ image in &I (q(4) = {Xi*, tjIG(tj)M 
is also’a rectangular parallelepiped 

(Fig. 1). 

Fig. 1 

The range of such operations is 
not difficult to determine. These 

operations q[tj, {Z(T), U(T)}] will 
be such that their components 

cP,[Q, {z(a), U(T)) I (s = h..., 4 
solve the tracking problem (e. g. see 
[5], p. 2931 of the linear function 

4s (tj) = hCis’ [fi* tj] X (tj), 

(s=i,..., m) (l-7) 

on the basis of the signal {z(a), 
U(T)} (0 < T f tj). (Here 
/$i~l [e, tj] is the vector row of 



the matrix XIS, t$- cormsonding to the iath coordinate of the phase vector 2.z .) We 

know from ol?timaI tracking theory 151 &at among the operations fp* which compute the 
values of the coordinates q~(~~~ (1.7) of the vector qftjt) there exists an optimal resolv- 
ing operation rpsO which computes the quantity q,(tj) (1.7) with the smallest possible 

error in the least favorable case of the signal {z(t), u (z)), In other words, for every 

other operation ‘p8 (‘I which can be used at the instant t =: Q we have the relation 

sup, f Q - Q* f$j) 1 = min,sup, I q@ - qFB (fj) i (4 4 

The operation (P”~‘J’ therefore defines some domain Dfbj) in tbe space (q> which is 

described by the in~qu~~~~~s 1 qs* (q _ 4s p) 1 q 6, ltj) (s= 1, ‘ * .I na) 

where 6,(tj) is the upper bound of the absolute value of the error of computing the true 
value of the coordinate ql(gj) with respect to all the possible disturbances A(Z) (X.3), 
fl* 4) ; qS*(tJ is the value of the coordinate of the vector rr(&) computed at the instant 
t = tj by the operatian qa “i3r_ 

In computing J(G(tj) ) (1.6) we must also take account of the results of the previous 
measurements in the interval 0 < T < t$ (i = 1,. , . ,I) and the realized control u(t) 
(0 < t < t,). We make these allowances by assuming that as a result of the last obser- 
vation made at the instant t = bf_a we have determined the domain G8(tf_a) in the 

form of a rectangular parallepiped (Fig, 1) in the vector space (q]* 
Since system (Cl* I) moved under the control t&t*” (i!) == racy in the interval 

t i_1 < 1 < tj , it follows that the domain G8 (tj_1) is deformed into the domain 

6s (tj, tj_.r) whose points Q(tj, tj_J are g&en by Eqs. 

= cb (tj_l> f g (tj3 tj_l)f 4 ttj_l) CfZ Ga ttL1) 

Thus, the domain G0 (t,, tj_a) is again a rectangular parallelepiped, since the points 

of the domain GB (tj, t& are obtainable by a shift by the same vector g(tjl Q.-i). 

But if we now allow for the result of tracking in the interval 0 < z < ff, we see that 
the domain Ga (tr) of possible values q(ti) ~orn~~ted on the basis of the signal Z{T 1 

(0 < 2 \c tj) is the it GB ftj) = GB ffj, tj_.%> f\ D ($2) * It is clear that the domain 
Gates) is also a rectang~Iar parallelepi~d with faces parallel to the coordinate planes in 

the vector space (q). 
Although this approach may not yield a strictly optimal control result, and even though 

our procedure provides only a relatively minimal miss J (G f$)f (*.% all of its compn- 
rations are at least practically feasible. Thus, the procedure of constructing a control 
at each instant t = tj breaks down into two subsidiary problems: the problem of chaos- 

ing the tracking operations ‘ps” ltj, {z (T), u (T)}] which compute the quandties qS (tj) 

(1.7) (which essentially reduces to the problem of determining the domain Ca ($)),and 
the problem of determining the minimal miss J (G (t$) and the control u(?f (t) which 
ensures this miss- 

8, Let IIS assume that the set GB(tj) af wsxoxs Q (2j =r {X Ia, t$] I (~~~~~~ (g f$j ‘EZ 

E G (~~~~ corresponding ta some domain ~~~~) of possible states s(t) of the object at 
t = TV has been determ~~d for the instant t = tr. Let us consider the following ancil- 

lary problem. 
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Let the motion of the object in the time interval tj < t < 6 be described by Eqs. 
(1. l), (1.2). We are to choose a control u*(t) from among permissible controls (1.2) 

in such a way as to ensure that 

J = min,max,E(ti) for x[u]<p, ZEG($) (2.1) 
This is therefore the problem which must be solved at each step t = tj of the correc- 

tion decision process. To determine the control u*(t) which solves problem (2.1) we 

nansform expression (1.6) for the miss J(G(t,) ) . By the Cauchy formula the values of 
the selected coordinates zin at t = 6 are given by the relation 

{l:(a)),=(XtB,tjlI(lj)~m+{SX[8.rlBu(r)dr}_ (2.2) 
t: 

Since E (6) = _ll {x (+)I \i m , ex ression (2.1) with allowance for (2.2) becomes p 

J (G (tj)) = minu maxq (2.3) 

xIul\<pt, qEG,(tj) 
We note that the quantity w(6) given by 

9 

w(6) = $ X[O, T]BU(T)dT 

is the solution of Eq. ‘i 

dwJ dt = A W + BUY w(tj) = 0 
Let us write 

max, II Y + 04, II = r W%J~ Q E GQ (4) 
Then 

J (G (tj)) = rnin, r [{ul (6))~ for x [u] < p, tj < z < 6 

(2.4) 

(2.5) 

(2.6) 

We have therefore reduced problem (2. l), (1.2) of determining the control u*(t) 
(ti f t < @) which guarantees the smallest miss J(G(tj) ) for system (1.1) with the 
initial conditions II: (tj) from G(tj) to the problem of bringing system (2.4) from the point 

w(ti) = 0 to some point w”(6) corresponding to the minimum of the function 

Y[ {w(6) M. 
Solution of problem (2.3)-(2.5) in this case is facilitated by the convenient properties 

of the set Qr( {w}~) of points w satisfying the condition 

Qr( {w}d E {{w(6))m: 14 {46)&J < 5, 5 = const > 0} 

We can show that the sets Qc ((1~)~) are convex and closed. Let {uI(~))~ and (~(2))~ 

be some points from the set Qr t(w),). This means that 

+I [IJ%l = maxq II q + 0J19, II d 5 
r [{~‘~k,,l= maxq II q + {w(~)L II 4 5, q E G, ($) 

Let us choose a point 
{If$A’}m = ?I, {W(l)}m + (2 - h) {UP)), (0 G h d 1) 

from the segment connecting the points {w@)}~ and {‘U*))m from QZ({~}m). Then 

r IWO%1 = maq II 9 + iw (h)),ll = II qh + {w9, II = II h (8 + {W%?J + 

+ (1 - N (8 + {w’2’>m) II < h II elk + c him II + (1 - X) II 2 + @2’Ll\< 15 + (1 - h’) 5 = 5, 
4 f G, ($1 

This proves that the entire segment belongs to the set QL ({u)}&, i. e. that the set 
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Qr: ({w}mj is convex. It is also easy to verify the fact that & ({u&) is a closed set. 

Since the sets @J(w),) are convex and closed, it follows (see [5], p, 314) that the 

quantity min, y[{w},] = 5 is the smallest of the numbers 5 satisfying the condition 

ma= &* [kl- ELP [B’S [r, a,] kl} < 0, II h II = 1 (2.7) 

yc* [k] = min w’.k for WE Q1;W,) 
Here &’ (1;, a] is the fundamental matrix of the system s = - d”s associated with 

system (1.1) for u = 0, Further, p&(z)] is the norm in the space *B {h(r), tj < r < 
< s} of the vector functions h(z) associated with the space B* (u(r), tr < Z( < 6) 

with the norm p*[u(r)l = x [z&)1 (1.2). 
If condition (2.7) for 5 = 5” = min is fulfilled with the equality sign, then the 

optimal conaol u*(t) which solves problem (2.3)-(2.5) can be found from the maxi- 

mum condition (see [5], p. 314) 
8 8 

i k”‘S [r, Q] Bu* (z) dz = ma=, 5 kq’S [z, SJ Bu (2) c-h W) 

Fig. 2 

uz 

Fig. 3 

3, Solution of the tracking ptoblsm. 
Let us describe briefly the solution of the optimal 
tracking problem involving determination of the quan- 

tities 8* (tj) and Ii ($1 ( [S]. p.247). We assume that 
the vector functions z (a), A (z) and y (r) = Q (a) I (r) are elements /6 (r) of some func- 
tion space B {h (z), 0 d z < tj} in which the norm p [h_(r)] is defined by the equation 

This relation has the following geometric signifi- 

cance, Let r 10, p, tj,fil denote the attainability 
domain ( [Sj, p. 116) of the process u, (b) (2.4) in the 
space (q}, i. e. the domain consisting of all the points 

q =~1 {w (t)}, to which it is possible to bring the mo- 
tion w (t) (2.4) by the instant t = 6 by means of the 

control u (t) (tj d t d @) subjecr to condition (1.2). 
Fulfillment of inequality (2.7) means that the domain 
l? [O, p, tj;Ol has points {zu}~ in common with the set 
Qr, ({w)*). If equality applies in (2.7), then the do- 

mains I? fO, p, tJ, *I and Qr. ({w},) are merely adja- 
cent. The point {u~O}~ from I? [O, p, ti, S] correr 
spending to the minimum of the function y I(w),] 
then lies on the boundary of the attainability domain 
(Fig.2), and the control U* (t) aims the motion w (t) 

at the point {w”},. 

If condition (2.7) is an inequality, then the point 
where the function. y [{w}~] reaches its absolute mini- 
mum lies inside the att&nanility domain I’ [O, p, tj, @I 

(Fig. 3). In this case we can alter n in such a way that 
equality once again applies in (2.7) and then proceed 

to find u from maximum condition (2.8). 
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P [A (z)] = x [A (r)] (1.4). We are required to compute the vector q = (X 16, tj] z(Q))~ 

Let us consider the computation of some single coordinate q8 of this vector. We assume 
that a is fixed, We can determine all the possible linear bounded operations cp, [tj, 

{z (r), u (Z)}] in the space B {h (T), 0 6 z g tj} from which we must choose the opera- 
tion ‘pso which computes the quantity % (t$ with the smallest possible error o, (tf) = 

= qspdo [$ (2 (r), u (r))] - a, (4) satisfying condition (1.8). 
Let us proceed as in [SJ, p. 294. We begin by setting z c 0 and A E 0 and consider- 

ing rhe signa*s y (z) = Q (r) x fr, tj ] 5 (f,) (0 < ‘5 B fj) 

Let us find the operation cp,’ which reconstructs the values of the coordinates cr, = I{X !fi 

tj]x (tj)}mI,. According to the minimax rule ( [5], p. 285). this can be done by finding 
from among the signals y (z) (3.1) the signals {y (T) lqs (tj) =I 1) which carry a (r, (tj) 
equal to unity. These signals can be found from the condition 

The required operation ‘p, Itj, y (r)] must satisfy the condition 

cps [lj, iY w I 98 ttj1= 111 = 1 (3.2) 

on any signal {y (7) ] q& (tj) = 1) carrying the quantity qs (ti) = 1. Knowing the signals 

{ &)Jq, Vj) = 1) I we must find the minimum signal y’(t) from the condition 

KS 0 =x [Y” 611 = min, II liY W i a Cfj) = 111 (3.3) 

By the minimax rule, the optimal resolving operation ‘ps* has the norm 

x* m”‘~~l = x* [Go I$* Y WI1 = %3° (3.4) 

and is distinguishable from the other linear operations va in that this operation on the 

m~imum signal .y” (z) yields the largest possible result as compared with all the other 
operations q$ with the same norm (3.4). i. e. 

(Pso [$ Y” (r)l = max, {cp, [tj, y* (r)] for x* I%1 = l/X,‘) (3.5) 

Conditions (3.4)-(3.5) define the operation qap80. For u E 0 this operation also solves 

our optimal tackling problem with respect to the signal z (r) = Y (4 -P A (z). Only in 
the case of a real signal z (z) does the operation q’s6 obtained from condition (3.2)- 

-( 3.5) yield an unavoidable error o 8 (tj), where ( 153. p, 281) 

Sup* I 0s ($3 1 =I SUP A 1 (Pea [tjs L\ (%)I I = YX* fcPt~“I = v / XS’ = 6 &j) 

In the case where the signal {z (T), u (z)) is tracked for ~$0, the required ope- 

ration q’s0 [tj, fz (.t), u (z)}] which reconstructs the quantity q9 (tj) from the signal {z(z) I 
a (@I is easy to determine if we know the operation cpso [tj, y (z)] for u = 0. Since any 

motion r (r) of system (1.1) can be found from Cauchy formula (2.2) (with r appear- 

ing instead of I?), we have 
Y* (r) z Q (t) X [TV ljI x (‘j) + Q (4 i X [z, 51 BU (5) dc == 

J 
+ 2.i 

= ?I W + Q (7) s x 1% 51 Bu (5) d5 

for u f 0, ‘j 
Recalling the linearity of the operation (P*‘, we obtain 

‘Ps” Ifjt {Y* (t)s u (r)ll = 93s’ ftj* y CT)1 - ‘Ps” Itjt y (C)l (3.6) 

v (5) = Q (5) s X 15, zl Bu (~1 dt 

tj 
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Operation (3.6) is the optimal resolving operation which computes the coordinate 

q8 t$ from the signal (2 (71, u ($1 with the smallest possible error sup~ !a s (tj) l=min,. 

4. Exrmpla, Let us consider a material paint m moving in some plane zigs under 
the action of a repeXling force proportional to the distance from the point m to the origin 

(zl = 0, xs = 0). Let us assume that the motion of the point is described in this case by 

the differential equations q” = zz* x2- = Xl + Ult x8* = Z#, x4- = “3 + up (4.1) 

Here (q, za} is the radius vector of the point, (ti, zr,s) is its velocity vector, and 
(ult ZZ> is the controlling force whose purpose is to minimize the deviation 

f = maxf@1 (@>I, 1% (@ft (JM 

of the point from the origin at the given instant t = @, 
The coordinates and velocity of the point at the initial instant t = 0 are assumed to 

be unknown ; all that we know is the domain 

G, ((9 =.({C7J : a1 (O) < q1 q b,@), do) SC q2 < b29 

which the point m can have entered by the instant t = 6 in the absence of the control 
(u E 0). We assume, moreover, that measurement and memorization of the magnitude 

and direction of the velocity at each instant t are possible during motion. The velocity 
can only be measured to within some error whose exact value is not known. We assume 
in advance, however, that the absolute value of the error A, involved in measuring each 

of the velocity components .zs and 4 cannot exceed some constant Y (Y > O), so that 

71 [AI = max+ imax (i & M f, I A2 (T) 1)) f Y (0 <T < tf G3 

We are required to choose a control program which uses the measured velocity of the 
point and the known law of variation of the controllting force u as the sole basis for en- 
suring that the paint approaches the origin by the instant t = 8 . We assume that the 

control program can be altered only at preselected instants la, tl, . . . . tl (where I0 =J: G 

is the initial instant of the point’s motion). The magnitude of the correcting conuol u 
must not exceed a prescribed value p, i.e. the following condition must be fulfilled 

throughout the time of motion: 

IIU (t) Ii” = U12 (tf f u22 CQ < P, oqtq,ss, p = cons* @AI 

Let t = tj be some instant of motion correction at which it is necessary to switch to 
the control u(j)(t), To determine the control u@(tf we must Construct the domain r& (ti)_ 
Let us begin by finding the operations T,” ft~, ( z z , u lzffl whick reconsttuct the coor- ( ) 

dinates 4, (Q) (1,7) of the vector p (ri> at the instant t = t;. We note that system (4.1) 
(for u z 0) is quite trackable with respect to velocity, so that such operations exist. 

By the condition of the problem the monitored signal z (r) (1.3) can be written in the 
form 

Recalling that the matrix X [t, ~1 given by 

* c = 
ch (” - T.) sh (t - t) 

sir (t - zf ch (t - z) 

is the fundamental 

for gS ft& (4.7): 
matrix of system (4. I) for u 5 0, we obtain the following 

gi ltjl = x2+1 ftj)d (8 - tj) + Z& rtj] shf@ - tjf 

expression 

In the notation of Sect. 3 we have 
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{Y (4 I a= 11 = (;I) {Y (7) I 92 = I) -= p1 
0 

cl8 = [ch (z - Q) - z2S-1 (tj) ch (6 - z)] / sh (6 -‘:) 

PS = “2s_l @j) sh (z - $) + xYJ ($) ch (t - tj) (s = 1, 2) 

Now let us take the quantity 11 [A] (4.3) as the norm of x [y (z)] in the space B {y (T), 

0 < z < ti}. We can then find the signals {~~“l(t)l~~ = I} and {y” (e) 1 qz = l} from the 
condition XI’ = minXI maxt [max (I ~1 I, I P2 I)] 

x2' == min,, max+ [max (I u2 1 , 1 p1 J)] (O ” 6 ‘j) 
They are of the form 

{y”(t)I q1= 11 = ; , 
0 

0 
{f (T) 1 c/z :- I} = r; 

0 
sh lj 

xl0 == x2” - ~11 6 ,- c,h (6 _ tj) 

The operation ‘p,o [tj, y (z)] which reconstructs the quantity qS (in the case of the 

norm r[~ (T)] = q \A] (4.3)) is of the form ‘j 

‘Ps” Itjt Y tr)l = 
5 

Yl b) dT’,,o(z) + Y% CT) dVs~“(t) 
II 

Here VSt (a) is a function with bounded variation. Recalling that the norm of the ope- 

ration vao is given by :j 
x* [%“I = \ 1 dC7,< (7) I + I cw,; (T) I = $7 

b 
and that the values of the operation on the minimal signal is equal to unity, we obtain 

‘j 
'Pl" I/j, I!/(r)] = Yl(t)4'011(T), (p.1' [tj~ Y(t)] .= 

s 

fj 

s 

?/2(T)dVi2 (t) 

0 

V12"(r)= lizlo( 0 ((j < Z < Y,) 
0 (z = 0) 

VII0 (z) = I’~~’ (t) = - Ch (8 - tj) / sh tj (0 < r < $) 
Sh (6 - l/z tj)/Ch ‘/z tj (t ~ tj) 

The components us (6) of the vector v (5) (3.6) are 

vg I;) = ,3 ch (; - z) us (t) (2~ 

Hence, the operation q,’ [tj, {z (r),’ u (z)}], which solves the problem of determining 

the coordinate q8 (tj)of the vector 4 (tj) from the signal {z (z), u (T)} can be written as 

9s” [lj, czta WI=& 
3 

[x211 (tj) Ch @ - ~2s (0) Ch (6 _- tj) - 

’ j 
- ch (6 - lj) 

s 
C,h z ~8 (t) dz 

3 
= Q** (tj) 

0 

This operation yields the error o8 (tj) whose absolute value has the upper bound 

B (tj) given by 6 (tj) = 
Y [chfi +ch(6- tj)] 

sh ti 
Thus, the domain D (t,) is defined by the-inequalities 

D (tj) f {tqs 1 : ql* (tj) - 6 (tj) < Ql< ql* (tj) 1- 6 (tj)* 

4a* (lj)- 6 (tj) < QZ < Q2* trj) + 6 ttj)I 
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g* (tj, ft_*) of the vector g (tj, tj-& 

. 

to which the domain Ge (tl-l> 
t = fj are of the form 

:I 

g, ttj* tj_1) = 
s 

sh (6 - tj)@!jl“'(t) dZ 

1. 
J-1 

The domain GB (tr) is therefore given by the inequalities 

Ga ttj) c iiqsl: of) < q* < b(j)) 

a?’ zz max (p + Bs (tje tj-l)s qs* kjl- s ftj)) 

b(j) = min @f-t) + g, (ti, tj_l), qs* (tj) + 6 (tj)) s 

The control U* (t) (ti 0 t Q 6) can be found by solving inequality (2.7) and then 
applying maximum condition (2.8). We can therefore proceed on the basis of simple 
geometric relations. Specifically, the vector k” and the quantiq r;l” at each instant 

f = ti can be readily determined from the condition of adjacency of the attainabili~ 

domain P [0, [L, tit 61 and the level surfaces 

7 [{U&I = maxn (I rll+ {WI(~) (@I, I , I 42 + (a(j) @+)I, I ), Q E '4 Ctj) 

The attainability domain T [0, k, tj, 6] is in this case a disk of the radius 

rs= p (ch(6 - tr) - 1) 

The level surfaces Y I{w},J < 5 in this case are rectangles (Fig. 2) with the sides 

qi = bl’j) - 5. ql” = .,(j) + 5, Pi = b,(j) - 5, qz” = & + 5 

5 & I/% max ( I bl(j) - ,,(jJ J , 1 b&j) - ,,(jJ 1). 

The vector k” is therefore the unit vector of the normal to the surface P IO, JA, tj, 61. 

Maximum condition (2.8) implies that the control U* (@ is constant and equal to 

u* (t) = - pir” over the entire interval tj < t < @. 
Numerical realization of the above procedure for the values 

/.l = 5, Y = 0,2, 6 = 2, x (0) = (2, 1, 4, O), a,0& 10, a&!-~: 14, &@)= bz(o)= 16 

and for the correction instants 

t* = 0, tl = 0.5, t-2 = 1.0, t, = 1.25, ta = 1.5 

yielded the following values of the controlling forces: 
u(O)= { _ 3.536, -3.536}, .fr)= (-2.096, -4.539). u’~) = {-1.462,--4.782), u(31F- 

= {_0.44f, -_4,Q80}, ,(I’= (-2.618, -4.259) 

and the following values for the misses J (G (tj)) = Sj”: 

5;; = 6.233, &” = 4.879, 62” = 4.314, 5,” = 4,252, &” = 3.975 

We note that if the value of the vector g (0) were known exactly from the start (in 
this case q (0) = {lt.f51, 15.048)), then the conno u (t) (4.4) (in this case u (t) = 
= {--2.7X!, -4.132)) would yield the miss e (9) = 3.532. 

I wish to thank N. N. Krasovskii. who supervised the present study. 
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Ideas related to Liapunov’s second method and developed by Chetaev [e. g. see [l and 31) 
are used to obtain an instability criterion somewhat different from the well-known crite- 
ria of Liapunov and Chetaev. 

1. 1 n t r o d u c t 1 on , Let us consider the stability of the equilibrium position of a 

system of ordinary differential equations 

dz / at = X(x, t), X(0, t) = 0 (1.1) 

We assume that the 72 -dimensional vector function X(x, t) is ccntinuous in t and has 

continuous partial derivatives with respect to P . 

The criterion which we shall formulate is valid for systems of any order m; in order 
to illustrate the basic ideas geometrically, we shall first sonsider a simple example of a 

third-order system. 

Let us assume that for $ > 0 (here and below g, ‘I, 5 represent the components of 

the vector I) we have the inequalities 

$>6(5) >(I, if lnax(l?l, 151)<& (1.2) 

(1.3) 

$- ( / 5 I- kg) > 0 for I 5 I == kc, I q I < kE (1.4) 
Let us consider the pyramid OA”B’CcD ’ (see Fig. 1) defined by the inequality max 

(I’ll, 151) G kE and intersected by 

the plane A BCD(g = E) in the imme- 
diate neighborhood of the origin. Con- 

ditions (1.2)-( 1.4) imply that the ua- 
jectories enter the truncated pyramid 

T, intersecting its surface at points 
belonging to the portion S,, consisting 
of the faces A BCD, BB’C’C and 
D D”A ‘A ; similarly, the trajectories 
emerge from the pyramid through points 
of the portion S, of its surface consist- 
ing of the faces BB’A’A , DD’C’C 

and A”B’C”D”. As we see from condition (1.2). the representing point can lie inside 
?’ for a finite time only ; this implies that the family of trajectories entering the pyra- 


